
© 2010 Bennett, McRobb and Farmer 1

Specifying Control

Based on Chapter 9
Bennett, McRobb and Farmer

Object Oriented Systems Analysis
and Design Using UML

4th Edition, McGraw Hill, 2010

© 2010 Bennett, McRobb and Farmer 2

In This Lecture You Will Learn:

• how to identify requirements for control in an
application;

• how to model object life cycles using state
machines;

• how to develop state machine diagrams from
interaction diagrams;

• how to model concurrent behaviour in an object;
• how to ensure consistency with other UML

models.

© 2010 Bennett, McRobb and Farmer 3

State

• The current state of an object is
determined by the current value of the
object’s attributes and the links that it has
with other objects.

• For example the class StaffMember has
an attribute startDate which
determines whether a StaffMember
object is in the probationary state.

© 2010 Bennett, McRobb and Farmer 4

State

• A state describes a particular condition that a
modelled element (e.g. object) may occupy for a
period of time while it awaits some event or
trigger.

• The possible states that an object can occupy
are limited by its class.

• Objects of some classes have only one possible
state.

• Conceptually, an object remains in a state for an
interval of time.

© 2010 Bennett, McRobb and Farmer 5

state machine

• The current state of a GradeRate object
can be determined by the two attributes
rateStartDate and
rateFinishDate.

• An enumerated state variable may be
used to hold the object state, possible
values would be Pending, Active or
Lapsed.

© 2010 Bennett, McRobb and Farmer 6

state machine

state machine for
the class
GradeRate.

Movement
from one
state to
another is
dependent
upon events
that occur
with the
passage of
time.

Pending

Active

Lapsed

Transition
between
states

[rateStartDate <=
currentDate]

[rateFinishDate <=
currentDate]

after [1 year]

Final
psuedostate

Initial
pseudostate

Change
trigger

GradeRate

Relative
time trigger

State

Change
trigger

state machine GradeRate

© 2010 Bennett, McRobb and Farmer 7

Types of Event

• A change trigger occurs when a condition becomes true.
• A call trigger occurs when an object receives a call fo

one of its operations either from another object or from
itself.

• A signal trigger occurs when an object receives a signal
(an asynchronous communication).

• An relative-time trigger is caused by the passage of a
designated period of time after a specified event
(frequently the entry to the current state).

© 2010 Bennett, McRobb and Farmer 8

Events

Commissioned

Active

authorized(authorizationCode) [contractSigned]
/setCampaignActive

This trigger must correspond to
an operation in the Campaign
class

© 2010 Bennett, McRobb and Farmer 9

Internal Activities

State Name

entry /activity-expression
exit /activity-expression
do /activity

Name
compartment

Internal
activities
compartment

© 2010 Bennett, McRobb and Farmer 10

‘Menu Visible’ State

Menu Visible state for a
DropDownMenu object.

Menu Visible

itemSelected / highlightItem

entry/ displayMenu
do /
playSoundClip
exit / hideMenu

Name compartment

Internal activities compartment

Internal transitions compartment

event itemSelected()
triggers the action
highlightItem()

While the object remains in the
Menu Visible state, the activity
causes a sound clip to be played.

Exiting the state triggers
hideMenu()entry action causes the

menu to be displayed

© 2010 Bennett, McRobb and Farmer 11

state machine
for the class
Campaign.

Commissioned

Authorized(authorizationCode)
[contractSigned]
/setCampaignActive

/assignManager;
assignStaff

Active

Completed

Paid

campaignCompleted
/prepareFinalStatement

paymentReceived(payment)
[paymentDue - payment > zero]

paymentReceived(payment)
[paymentDue - payment <= zero]

archiveCampaign
/unassignStaff;
unassignManager

Recursive transition
models any payment
event that does not
reduce the amount due
to zero or beyond.

Action-expression
assigning manager and
staff on object creation

Guard condition ensuring
complete payment
before entering Paid

© 2010 Bennett, McRobb and Farmer 12

A revised state
machine for

the class
Campaign

Commissioned

Authorized(authorizationCode)
[contract signed]
/setCampaignActive

/assignManager;
assignStaff

Active

Completed

Paid

campaignCompleted
/prepareFinalStatement

paymentReceived(payment)
[paymentDue - payment > zero]

paymentReceived(payment)
[paymentDue - payment = zero]

archiveCampaign
/unassignStaff;
unassignManager

paymentReceived(payment)
[paymentDue - payment < zero]
/generateRefund

If the user requirements
were to change, so that
an overpayment is now
to result in the automatic
generation of a refund, a
new transition is added.

© 2010 Bennett, McRobb and Farmer 13

Nested Substates

The Active state of Campaign
showing nested substates.

The transition from the initial
pseudostate symbol should not be
labelled with an event but may be
labelled with an action, though it
is not required in this example

Advert Preparation

campaignCompleted
/prepareFinalStatement

Running Adverts Scheduling
confirmSchedule

extendCampaign
/modify Budget

advertsApproved
/authorize

Active

Decomposition compartment

© 2010 Bennett, McRobb and Farmer 14

Nested States

The Active state of
Campaign with the
detail hidden. Active : Running

The submachine Running is
referenced using the include
statement.

Hidden decomposition
indicator icon

© 2010 Bennett, McRobb and Farmer 15

The Active state with concurrent
substates.

Advert Preparation

Running Adverts Scheduling
confirmSchedule

extendCampaign
/modify Budget

advertsApproved
/authorize

Active

Survey

Evaluation

surveyComplete

runSurvey

Running

Monitoring

campaignCompleted
/prepareFinalStatement

© 2010 Bennett, McRobb and Farmer 16

Concurrent States

• A transition to a complex state is equivalent to
a simultaneous transition to the initial states
of each concurrent state machine.

• An initial state must be specified in both
nested state machines in order to avoid
ambiguity about which substate should first
be entered in each concurrent region.

• A transition to the Active state means that
the Campaign object simultaneously enters
the Advert Preparation and Survey
states.

© 2010 Bennett, McRobb and Farmer 17

Concurrent States

• Once the composite state is entered a
transition may occur within either
concurrent region without having any
effect on the state in the other concurrent
region.

• A transition out of the Active state
applies to all its substates (no matter how
deeply nested).

© 2010 Bennett, McRobb and Farmer 18

Completion Event

State 1

Transition caused
by the event
someTrigger

Transition fired
by completion
event

State 2

someTrigger

© 2010 Bennett, McRobb and Farmer 19

Synchronized Concurrent
Threads.

•Explicitly showing how an event triggering a transition to a state with
nested concurrent states causes specific concurrent substates to be
entered.

•Shows that the composite state is not exited until both concurrent nested
state machines are exited.

Fork Join

© 2010 Bennett, McRobb and Farmer 20

Entry & Exit Pseudostates

StoryBoard

AdvertPrep:
AdvertPrepSM

AdvertRunning

abort

sm AdvertPrepSM

abort Advert
Aborted

Advert
Reworked Advert

Reworked

Advert
Aborted

sm Advert

Exit pseudostateEntry pseudostate

© 2010 Bennett, McRobb and Farmer 21

Junction & Choice
Pseudostates

x

[condition1] [condition2]

Junction pseudostate

Choice pseudostate

[<15]

[=15]

[>15]

StateA

StateCStateB

StateD

© 2010 Bennett, McRobb and Farmer 22

History Pseudostates

Advert Preparation

Running Adverts Scheduling
confirmSchedule

extendCampaign
/modify Budget

advertsApproved
/authorize

Active

Survey

Evaluation

surveyComplete

runSurvey

Running

Monitoring

campaignCompleted
/prepareFinalStatement

Suspended

H

suspendCampaign
/stopAdverts

resume
Campaign

H

Shallow history psuedostates with
transition to the default shallow
history substates.

© 2010 Bennett, McRobb and Farmer 23

History Pseudostates

H H*

Deep history
pseudostate

Shallow history
pseudostate

© 2010 Bennett, McRobb and Farmer 24

Preparing state machines

• Two approaches may be used:
– Behavioural approach

– Life cycle approach

Allen and Frost (1998)

© 2010 Bennett, McRobb and Farmer 25

Behavioural Approach

1. Examine all interaction diagrams that involve
each class that has heavy messaging.

2. Identify the incoming messages on each
interaction diagram that may correspond to
events. Also identify the possible resulting
states.

3. Document these events and states on a
state machine.

4. Elaborate the state machine as necessary to
cater for additional interactions as these
become evident, and add any exceptions.

© 2010 Bennett, McRobb and Farmer 26

Behavioural Approach

5. Develop any nested state machines (unless
this has already been done in an earlier
step).

6. Review the state machine to ensure
consistency with use cases. In particular,
check that any constraints that are implied
by the state machine are appropriate.

© 2010 Bennett, McRobb and Farmer 27

Behavioural Approach

7. Iterate steps 4, 5 and 6 until the state machine
captures the necessary level of detail.

8. Check the consistency of the state machine
with the class diagram, with interaction
diagrams and with any other state machines
and models.

© 2010 Bennett, McRobb and Farmer 28

:Client :Campaign

listCampaigns

:CampaignManager

sd Record completion of a campaign

loop

:CompleteCampaignUI

:CompleteCampaign

getClient

selectClient

loop

getCampaignDetails()

startInterface

[For all clients]

showClientCampaigns

completeCampaign

[For all client’s campaigns]

completeCampaign
completeCampaign

Active state

Completed state

Active

Completed

Sequence
Diagram with
States Shown

© 2010 Bennett, McRobb and Farmer 29

Initial state
machine for the
Campaign
class—a
behavioral
approach.

Commissioned

authorized(authorizationCode)
[contract signed]
/setCampaignActive

/assignManager;
assignStaff

Advert Preparation

Completed

Paid

campaignCompleted
/prepareFinalStatement

paymentReceived(payment)
[paymentDue - payment > zero]

paymentReceived(payment)
[paymentDue - payment = zero]

archiveCampaign
/unassignStaff;
unassignManager

paymentReceived(payment)
[paymentDue - payment < zero]
/generateRefund

Running Adverts Scheduling
confirmSchedule

extendCampaign
/modify Budget

advertsApproved
/authorize

sm Campaign Version 1

© 2010 Bennett, McRobb and Farmer
30

Commissioned

Authorized (authorizationCode)
[contract signed]
/setCampaignActive

/assignManager;
assignStaff

Advert Preparation

Completed

Paid

campaignCompleted
/prepareFinalStatement

paymentReceived (payment)
[paymentDue - payment > zero]

paymentReceived (payment)
[paymentDue - payment = zero]

archiveCampaign
/unassignStaff;
unassignManager

paymentReceived (payment)
[paymentDue - payment < zero]
/generateRefund

Running Adverts Scheduling
confirmSchedule

extendCampaign
/modifyBudget

advertsApproved
/authorize

Active

sm Campaign Version 2

Revised state
machine for the
Campaign class.

© 2010 Bennett, McRobb and Farmer

31

Advert Preparation

Running Adverts Scheduling
confirmSchedule

extendCampaign
/modify Budget

advertsApproved
/authorize

Running

Survey

Evaluation

surveyComplete

runSurvey

Monitoring

authorized(authorizationCode)
[contract signed]
/setCampaignActive

/assignManager;
assignStaff

Paid

paymentReceived(payment)
[paymentDue - payment > zero]

paymentReceived(payment)
[paymentDue - payment = zero]

archiveCampaign
/unassignStaff;
unassignManager

Active

campaignCompleted
/prepareFinalStatement

Commissioned

Completed

campaignCancelled
/cancelSchedule
calculateCosts;
prepareFinalStatement

Suspended

H

suspendCampaign
/stopAdverts

resumeCampaign

H

campaignCancelled
/calculateCosts;
prepareFinalStatement

sm Campaign Version 3

paymentReceived(payment)
[paymentDue - payment < zero]
/generateRefund

Final version
of Campaign
state machine.

© 2010 Bennett, McRobb and Farmer 32

Life Cycle Approach

• Consider the life cycles for objects of each class.
• Events and states are identified directly from use

cases and from any other requirements
documentation that happens to be available.

• First, the main system events are listed.
• Each event is then examined in order to

determine which objects are likely to have a
state dependent response to it.

© 2010 Bennett, McRobb and Farmer 33

Life Cycle Approach Steps

1. Identify major system events.

2. Identify each class that is likely to have a state
dependent response to these events.

3. For each of these classes produce a first-cut
state machine by considering the typical life
cycle of an instance of the class.

4. Examine the state machine and elaborate to
encompass more detailed event behaviour.

© 2010 Bennett, McRobb and Farmer 34

Life Cycle Approach Steps
5. Enhance the state machine to include

alternative scenarios.
6. Review the state machine to ensure that is

consistent with the use cases. In particular,
check that the constraints that the state
machine implies are appropriate.

7. Iterate through steps 4, 5 and 6 until the
state machine captures the necessary level
of detail.

8. Ensure consistency with class diagram and
interaction diagrams and other state
machines.

© 2010 Bennett, McRobb and Farmer 35

Life Cycle Approach

• Less formal than the behavioural approach
in its initial identification of events and
relevant classes.

• Often helpful to use a combination of the
two, since each provides checks on the
other.

© 2010 Bennett, McRobb and Farmer 36

Protocol State Machines

• UML 2.0 introduced a distinction between
protocol and behavioural state machines.

• All the state machines so far have been
behavioural.

• Protocol state machines differ in that they
only show all the legal transitions with their
pre- and post-conditions.

© 2010 Bennett, McRobb and Farmer 37

Protocol State Machines

• The states of a protocol state machine
cannot have
– entry, exit or do activity sections

– deep or shallow history states

• All transitions must be protocol transitions

© 2010 Bennett, McRobb and Farmer 38

Protocol State Machines

• The syntax for a protocol transition label is
as follows.

'[' pre-condition ']' trigger '/'

'[' post-condition ']'

• Unlike behavioural transitions protocol
transitions do not have activity
expressions.

© 2010 Bennett, McRobb and Farmer 39

Sequence Diagram for Protocol
State Machine Example

:TicketMachine :Barrier after:WeightSensor

sd Car enters car park

raiseBarrier

lowerBarrier

before:WeightSensor

activate

Raised

Lowered

Lowered
Active

deactivate

Blocked

barrierLowered

Inactive

ticketRequested

© 2010 Bennett, McRobb and Farmer 40

Protocol State Machine

[barrierState = Raised and
barrierRaisedTime > 20s]
lowerBarrier/
[barrierState = Lowered]

Lowered

Raised

[barrierState = Lowered]
raiseBarrier/
[barrierState = Raised]

sm Barrier {Protocol}

© 2010 Bennett, McRobb and Farmer 41

Consistency Checking

• Every event should appear as an incoming message for
the appropriate object on an interaction diagram(s).

• Every action should correspond to the execution of an
operation on the appropriate class, and perhaps also to
the dispatch of a message to another object.

• Every event should correspond to an operation on the
appropriate class (but note that not all operations
correspond to events).

• Every outgoing message sent from a state machine must
correspond to an operation on another class.

© 2010 Bennett, McRobb and Farmer 42

Consistency Checking

• Consistency checks are an important task
in the preparation of a complete set of
models.

• Highlights omissions and errors, and
encourages the clarification of any
ambiguity or incompleteness in the
requirements.

© 2010 Bennett, McRobb and Farmer 43

Summary
In this lecture you have learned about:
• how to identify requirements for control in an

application;
• how to model object life cycles using state

machines;
• how to develop state machine diagrams from

interaction diagrams;
• how to model concurrent behaviour in an

object;
• how to ensure consistency with other UML

models.

© 2010 Bennett, McRobb and Farmer 44

References

• UML 2.2 Superstructure Specification
(OMG, 2009)

• Douglass (2004)
(For full bibliographic details, see Bennett,
McRobb and Farmer)

